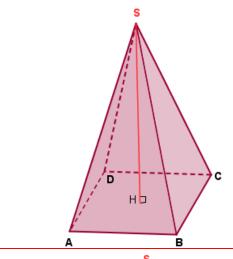
Les solides

I) Présentation des solides

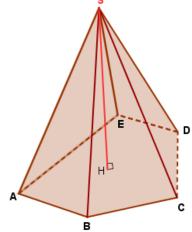
Solides usuels		
Prisme	h	
Parallélépipède rectangle	h L	
Cube	c	
Cylindre	h	
Cône de révolution	h c g	
Pyramide	n	
Boule	O R	

II) La pyramide

1) Définitions

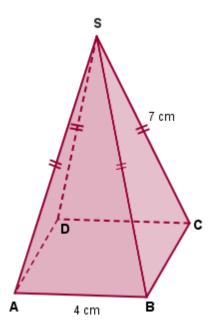

La pyramide est un solide composé :

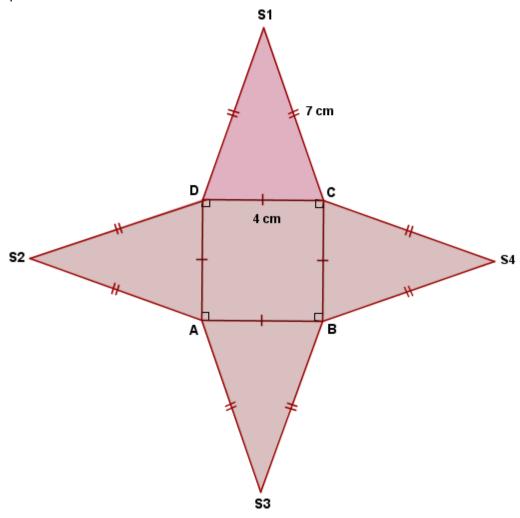
- d'une base : un polygone
- de faces latérales : des triangles qui ont un sommet en commun, le sommet de la pyramide.


La hauteur d'une pyramide est la droite passant par le sommet et perpendiculaire à la base

La hauteur désigne aussi la longueur du segment qui a pour extrémités le sommet de la pyramide et le pied de la hauteur

2) Exemples


- La base de la pyramide est le carré ABCD.
- Les faces latérales sont les triangles SAB; SBC SAD, et SDC
 - Le point S est le sommet de la pyramide
 - La hauteur est le segment [SH]


- La base de la pyramide est le pentagone ABCDE.
- Les faces latérales sont les triangles SAB; SBC, SDC; SED et SAE
 - Le point S est le sommet de la pyramide
 - La hauteur est le segment [SH]

3) Patron d'une pyramide

Exemple: Tracer le patron de la pyramide ci-dessous:

Le patron est :

III) Le cône de révolution

1) Définitions

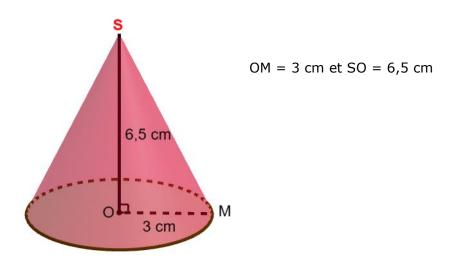
En faisant tourner un triangle rectangle autour d'un de ses côtés de l'angle droit on obtient un cône de révolution.

Le cône de révolution est un solide composé

- d'un sommet S
- d'une base : un disque

La hauteur d'un cône de révolution est la droite passant par le sommet et le centre de la base

La hauteur désigne aussi la longueur du segment qui a pour extrémités le sommet du cône et le centre de sa base.


2) Exemple:

Le cône de révolution ci-dessus est un cône de sommet S, dont la base est un disque de rayon 5 cm et dont la hauteur est de 10 cm.

3) Patron d'un cône de révolution :

Exemple : Tracer le patron du cône de révolution de l'exemple ci-dessus (le rayon est de 5 cm et la hauteur est de 10 cm:

On calcule d'abord la distance SM (qui est une génératrice de ce cône):

Dans le triangle SOM rectangle en O, d'après le théorème de Pythagore on a :

$$SM^2 = SO^2 + OM^2$$

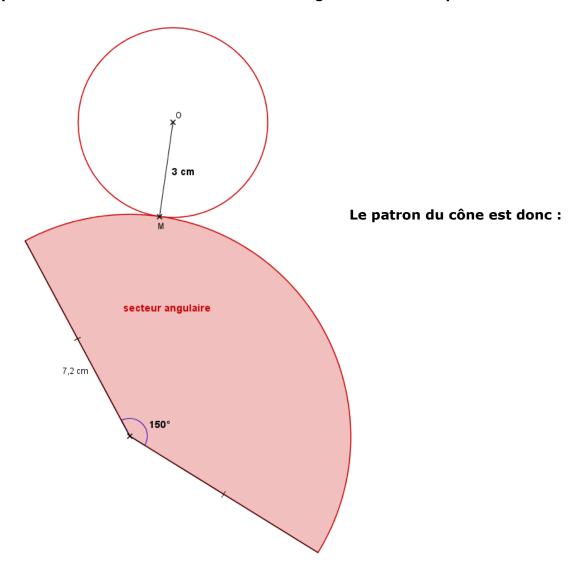
$$SM^2 = 6,5^2 + 3^2 = 42,25 + 9 = 51,25$$

SM =
$$\sqrt{51,25} \approx 7,2 \text{ cm}$$
. SM $\approx 7,2 \text{ cm}$.

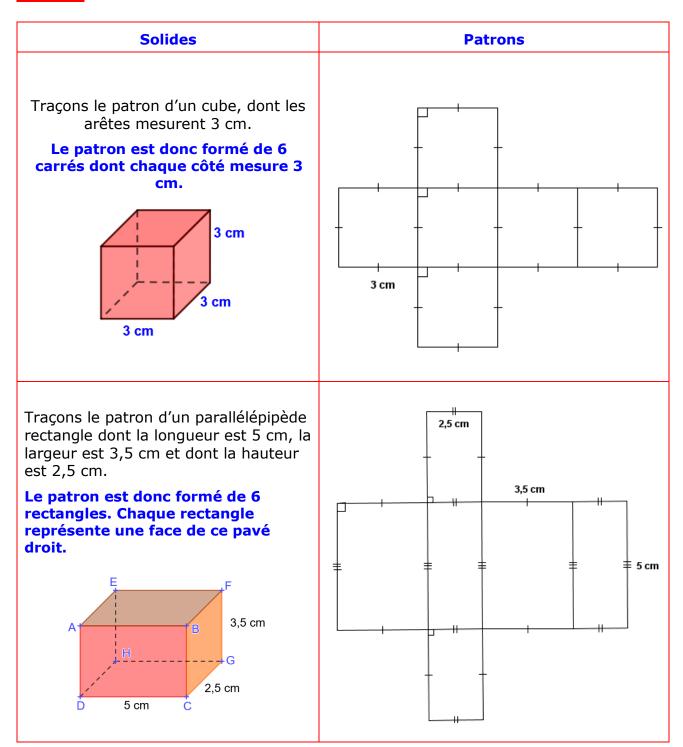
On calcule ensuite le périmètre du disque :

$$p = 2 \times \pi \times r$$

$$p=2\times\pi\times3\,=\,6\times\pi\,\approx\,18.8\,cm$$
 . Le périmètre du disque est de 18,8 cm

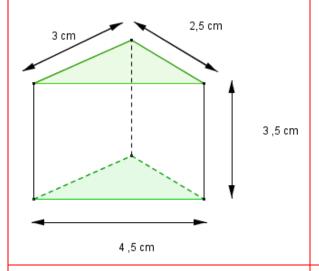

La longueur d'un arc de cercle est proportionnelle à l'angle au centre correspondant à son arc.

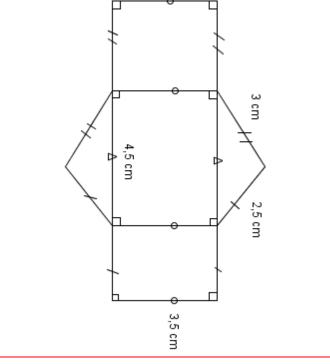
Angle au centre	360°	a° ≉
Longueur de l'arc	$2 \times \pi \times SM \approx 2 \times 3,14 \times 7,2 \approx 45,2$	Périmètre du disque : 18,8 cm


On fait le produit en croix on obtient :
$$a = \frac{360 \times 18,8}{45,2} \approx 150^{\circ}.$$

L'angle du secteur circulaire est d'environ 150°

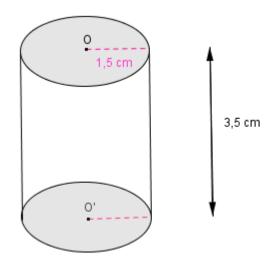
Le périmètre du secteur circulaire doit être égal à celui du disque.

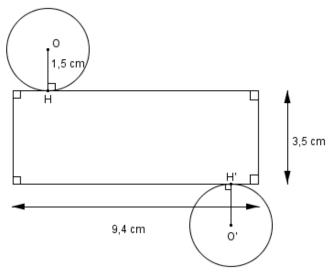



IV) Autres patrons des solides. Rappel Patrons de solides usuels

Traçons le patron d'un prisme dont la base est un triangle de dimensions 4,5 cm; 3 cm et 2,5 cm et dont la hauteur est 3,5 cm.

Le patron est donc formé de 3 rectangles et de 2 triangles.





Traçons le cylindre dont les bases sont des disques de rayon 1,5 cm et la hauteur est de 3,5 cm.

Le patron est donc formé d'un rectangle et de 2 disques.

La longueur du rectangle est égale au périmètre du disque et la largeur de ce rectangle est de 3,5 cm

- On calcule le périmètre du disque : $P = 2 \times \pi \times R \approx 2 \times 3,14 \times 1,5 \approx 9,42 \text{ cm}$
- On trace un rectangle dont la longueur est celle de ce périmètre soit de 9,42 cm et dont la largeur est égale à la hauteur du cylindre soit de 3,5 cm
- On trace deux points H et H' de part et d'autre du rectangle puis on trace deux points O et O' (les centres des deux disques) tel que : OH = OH' = 1,5 cm (le rayon du disque) et tel que [OH] et [OH'] soient perpendiculaires au côté du rectangle
- On trace les deux disques de rayon 1,5
 cm de part et d'autre du rectangle de centre
 O et O'