Déterminants de deux vecteurs. Vecteurs colinéaires

I) Déterminants de deux vecteurs

Soit (O, $\vec{\imath}$, $\vec{\jmath}$) un repère du plan . Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives dans ce plan : \vec{u} (x; y) et \vec{v} (x'; y').

Le nombre xy' - x'y est appelé déterminant des vecteurs \vec{u} et \vec{v} dans ce repère.

$$\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y$$

Exemple : Dans un repère $(0, \vec{\imath}, \vec{\jmath})$, les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives dans ce plan : \vec{u} (4 ; 5) et \vec{v} (- 2 ; 1)

Le déterminant des vecteurs \vec{u} et \vec{v} est le nombre :

$$\begin{vmatrix} 4 & -2 \\ 5 & 1 \end{vmatrix} = 4 \times 1 + 5 \times (-2) = 4 - 10 = -6$$

Le déterminant de ces deux vecteurs est -6

II) Définition de vecteurs colinéaires

Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires si, et seulement si, il existe un nombre réel k tel que $\vec{v}=k$ \vec{u} .

Le vecteur nul $\vec{0}$ est colinéaire à tous les vecteurs.

Exemples : Soit $(0, \vec{i}, , \vec{j})$ un repère du plan

Soit (O, $\vec{\imath}$, $\vec{\jmath}$) un repère du plan. Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives dans ce plan :

1) Soit (O, $\vec{\imath}$, $\vec{\jmath}$) un repère du plan . Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives dans ce plan :

 \vec{u} (2 ; – 3) et \vec{v} (10 ; – 15) sont colinéaires en effet :

$$10 = 2 \times 5 \text{ et } -15 = -3 \times 5$$

donc $\vec{v} = 5 \vec{u}$

2) Soit (O, $\vec{\imath}$, $\vec{\jmath}$) un repère du plan. Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives dans ce plan :

$$\vec{u}$$
 $(\frac{1}{3}; -\frac{3}{5})$ et \vec{v} $(\frac{2}{9}; -\frac{1}{5})$ sont colinéaires en effet $\frac{2}{9} = \frac{1}{3} \times \frac{2}{3}$ et $-\frac{1}{5} = \frac{1}{3} \times -\frac{3}{5}$

donc
$$\vec{v} = \frac{1}{3}\vec{u}$$

3) \vec{u} (4; 5) et \vec{v} (8; -10) ne sont pas colinéaires en effet 8 = 4 x 2 mais -10 \neq 5 x 2

III) Déterminant de vecteurs colinéaires

1) Propriété

Dans un repère, on donne les vecteurs \vec{u} (x; y) et \vec{v} (x'; y')

Les vecteurs \vec{u} et \vec{v} sont colinéaires, si, et seulement si leur déterminant est nul c'est à dire si et seulement si x y' - y x' = 0

2) Exemples:

a) \vec{u} (2; -3) et \vec{v} (10; -15) sont-ils colinéaires?

Réponse : $2 \times (-15) - (-3) \times 10 = -30 + 30 = 0$ \vec{u} et \vec{v} sont donc colinéaires.

b) \vec{u} (7; -4) et \vec{v} (14; 8) sont-ils colinéaires?

Réponse : $7 \times 8 - (-4) \times 14 = 56 - (-56) = 56 + 56 = 112 \neq 0$ \vec{u} et \vec{v} ne sont donc pas colinéaires.

IV) Propriétés

- Trois points A, B et C sont alignés si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- Deux droites (AB) et (CD) sont parallèles si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exemples:

1) Soit les points A (1; -2), B(4; 3) et C (10; 13).

Pour savoir s'ils sont alignés on calcule les coordonnées de \overrightarrow{AB} et \overrightarrow{AC} :

$$\overrightarrow{AB}$$
 (4 - 1; 3 - (-2) \overrightarrow{AB} (3; 5)
 \overrightarrow{AC} (10 - 1; 13 - (-2)) \overrightarrow{AC} (9: 15)

Il est clair que \overrightarrow{AC} = 3 \overrightarrow{AB} donc les points sont alignés.

2) Soit les points A (1; 3), B (5; 2), C (6; 5) et D (10; -2).

Pour savoir si les droites (AB) et (CD) sont parallèles on calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB}$$
 (5 - 1; 2 - 3) \overrightarrow{AB} (4; -1) \overrightarrow{CD} (10 - 4; - 2 - 5) \overrightarrow{CD} (6; - 7)

Le déterminant des deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} est $4 \times (-7) - (-1) \times 6 = -28 + 6 = -22 \neq 0$

Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ne sont pas colinéaires, les droites ne sont donc pas parallèles.